Saturday, December 8, 2012

Article # 107. What is an Antioxidant?

What is an Antioxidant?
Antioxidant is the body defense mechanisms that safeguards us against damages triggered by toxins also known as free radicals, a product of normal oxidation process in cells. 

Smoking and exposure to pesticides, radiation, and other pollution could cause free radicals. Stress and food products tainted with mercury could also trigger free radicals. It is highly advisable to increase your body antioxidant level if you are subjected to the mentioned causes. Similarly for someone who has lack of food variety or bad eating habit.

As the name implies, antioxidants are substances that are capable of counteracting the damaging, but normal, effects of the physiological process of oxidation in animal tissue. Antioxidants are nutrients (vitamins and minerals) as well as enzymes (proteins in your body that assist in chemical reactions). They are believed to play a role in preventing the development of such chronic diseases as cancer, heart disease, stroke, Alzheimer's disease, Rheumatoid arthritis, and cataracts.

It is impossible for us to avoid damage by free radicals. Free radicals arise from sources both inside (endogenous) and outside (exogenous) our bodies. Oxidants that develop from processes within our bodies form as a result of normal aerobic respiration, metabolism, and inflammation. Exogenous free radicals form from environmental factors such as pollution, sunlight, strenuous exercise, X-rays, smoking and alcohol. Our antioxidant systems are not perfect, so as we age, cell parts damaged by oxidation accumulate.

The Antioxidant Process

Antioxidants block the process of oxidation by neutralizing free radicals. In doing so, the antioxidants themselves become oxidized. That is why there is a constant need to replenish our antioxidant resources.
How they work can be classified in one of two ways:
·         Chain-breaking - When a free radical releases or steals an electron, a second radical is formed. This molecule then turns around and does the same thing to a third molecule, continuing to generate more unstable products. The process continues until termination occurs -- either the radical is stabilized by a chain-breaking antioxidant such as beta-carotene and vitamins C and E, or it simply decays into a harmless product.

·         Preventive - Antioxidant enzymes like superoxide dismutase, catalase and glutathione peroxidase prevent oxidation by reducing the rate of chain initiation. That is, by scavenging initiating radicals, such antioxidants can thwart an oxidation chain from ever setting in motion. They can also prevent oxidation by stabilizing transition metal radicals such as copper and iron.